Posts

Solar power forecast to shut down coal plants faster than expected

By Jess Shankleman and Hayley Warren

June 17, 2017

Read the original article Here

Solar power, once so costly it made economic sense only in spaceships, is becoming cheap enough that it will push coal and even natural-gas plants out of business faster than previously forecast.

That’s the conclusion of a Bloomberg New Energy Finance outlook for how fuel and electricity markets will evolve by 2040. The research group estimated solar already rivals the cost of new coal power plants in Germany and the U.S. and by 2021 will do so in quick-growing markets such as China and India.

The scenario suggests green energy is taking root more quickly than most experts anticipate. It would mean that global carbon dioxide pollution from fossil fuels may decline after 2026, a contrast with the International Energy Agency’s central forecast, which sees emissions rising steadily for decades to come. “Costs of new energy technologies are falling in a way that it’s more a matter of when than if,” said Seb Henbest, a researcher at BNEF in London and lead author of the report.

The report also found that through 2040:

  • China and India represent the biggest markets for new power generation, drawing $4 trillion, or about 39 percent all investment in the industry.
  • The cost of offshore wind farms, until recently the most expensive mainstream renewable technology, will slide 71 percent, making turbines based at sea another competitive form of generation.
  • At least $239 billion will be invested in lithium-ion batteries, making energy storage devices a practical way to keep homes and power grids supplied efficiently and spreading the use of electric cars.
  • Natural gas will reap $804 billion, bringing 16 percent more generation capacity and making the fuel central to balancing a grid that’s increasingly dependent on power flowing from intermittent sources, like wind and solar.

BNEF’s conclusions about renewables and their impact on fossil fuels are most dramatic. Electricity from photovoltaic panels costs almost a quarter of what it did in 2009 and is likely to fall another 66 percent by 2040. Onshore wind, which has dropped 30 percent in price in the past eight years, will fall another 47 percent by the end of BNEF’s forecast horizon.

That means even in places like China and India, which are rapidly installing coal plants, solar will start providing cheaper electricity as soon as the early 2020s.

“These tipping points are all happening earlier and we just can’t deny that this technology is getting cheaper than we previously thought,” said Henbest.

Coal will be the biggest victim, with 369 gigawatts of projects standing to be cancelled, according to BNEF. That’s about the entire generation capacity of Germany and Brazil combined.

Capacity of coal will plunge even in the U.S., where President Donald Trump is seeking to stimulate fossil fuels. BNEF expects the nation’s coal-power capacity in 2040 will be about half of what it is now after older plants come offline and are replaced by cheaper and less-polluting sources such as gas and renewables.

In Europe, capacity will fall by 87 percent as environmental laws boost the cost of burning fossil fuels. BNEF expects the world’s hunger for coal to abate starting around 2026 as governments work to reduce emissions in step with promises under the Paris Agreement on climate change.

“Beyond the term of a president, Donald Trump can’t change the structure of the global energy sector single-handedly,” said Henbest.

All told, the growth of zero-emission energy technologies means the industry will tackle pollution faster than generally accepted. While that will slow the pace of global warming, another $5.3 trillion of investment would be needed to bring enough generation capacity to keep temperature increases by the end of the century to a manageable 3.6 degrees Fahrenheit (2 degrees Celsius), the report said.

The data suggest wind and solar are quickly becoming major sources of electricity, brushing aside perceptions that they’re too expensive to rival traditional fuels.

By 2040, wind and solar will make up almost half of the world’s installed generation capacity, up from just 12 percent now, and account for 34 percent of all the power generated, compared with 5 percent at the moment, BNEF concluded.

How Long Does It Take to Break Even With Solar Panels?

By Mikey Rox

June 15, 2017

Read the original article Here

Solar power has advanced leaps and bounds over the past couple decades, and those grid panels that harness the power of the sun and turn it into energy are everywhere. It’s not uncommon to find at least one house in your neighborhood that has panels covering every square inch of its roof.

You may have also been approached by a solar company rep about outfitting your home with panels. (These guys and gals are almost as ubiquitous as the product they’re selling.) And maybe you don’t understand the mechanics of solar home power — or its benefit to your wallet — which may make you hesitant to explore the option.

Well, you’re not alone. Those of us who haven’t adopted solar energy yet still have a lot of questions — namely, what’s this going to cost? And when will I break even?

The cost of solar panels

First, let’s get down to the nitty-gritty of just how much solar panels will set you back. It’s not cheap to save the planet, even though the sun has been free of charge for billions of years.

The easiest way to calculate the average cost of solar panels, according to New England-based solar-installation company EnergySage, is to look at its price in dollars per watt, and those numbers are fairly consistent across the country.

This year, “most homeowners are paying between $2.87 and $3.85 per watt to install solar, and the average gross cost of solar panels before tax credits is $16,800,” says EnergySage’s data. Figure in tax credits and the price comes down to $10,000 to $13,500, based on the average 5kW (5,000 watts) system that’s typically installed in the United States. EnergySage also says these numbers are about 9 percent lower than last year, but recommends comparing prices quoted to other homeowners in your area.

Now that we know how much the system will set us back, the next reasonable question is how long will it take to break even. (See also: 10 Ways Anyone Can Go Solar and Save on Energy)

When you’ll break even

Sarah Hancock is a digital marketing strategist who manages the solar coverage at BestCompany.com, an online review site that ranks companies in different industries. She says the amount of time it takes to break even depends on three main factors.

1. Current utility price

The higher the current electricity price is in your area, the more money you will save by going solar, which results in a faster break even time, Hancock says.

“For example, an individual who lives in California, where the price of electricity currently sits at about 17 cents per kilowatt-hour, will break even quicker than an individual who lives in Washington, where the electricity price is only 9 cents per kilowatt-hour, because the Californian will be saving more on his electricity bill each month,” Hancock says.

2. Available incentives

These vary from state to state. There are a number of different incentives to take into consideration, including tax credits, rebates, performance payments, and tax exemptions. The more incentives available to you, the quicker your break-even time will be.

“One of those incentives is the 30 percent federal tax credit,” says Andy Schell, marketing manager at Paradise Energy Solutions. “This credit allows solar owners to recoup 30 percent of the project’s cost. If you aren’t able to recoup all 30 percent in year one, the remaining amount can be carried forward for 20 years until the full credit is expended. In addition, USDA grants and accelerated depreciation schedules are available for qualifying businesses and farms.”

This is a good resource to find solar-energy incentives available in your state.

3. Method of payment

According to Hancock, you can purchase the panels outright, or get them on loan, lease, or PPA (power purchase agreement — which is a financial agreement that allows a developer to arrange the design, permits, financing, and installation of a solar energy system, and lasts anywhere from 10 to 25 years).

However, there are fewer studies supporting the increased home value when you upgrade your home through a PPA or a lease. The reason is simple: With an upfront purchase or loan, the new buyer will not have to pay for any of the electricity produced by the panels because you would have already paid for it. With a PPA, the new buyer will still pay for electricity, simply at a lower rate than what other neighbors will pay to the utility company. Those agreements are easily transferable and can also be bought out by either seller or buyer if necessary.

The payment method that will result in the quickest break-even time varies from state to state depending on the two other factors mentioned above — utility price and available incentives. If you live in a state with high electricity prices and several incentives, you will probably break even quicker with a loan because your energy savings will be higher than your loan payment. However, if you live in a state with low electricity prices and few incentives, you’ll most likely break even faster with an outright purchase.

“To provide a general range,” Hancock says, “most individuals who go solar will break even in 15 to 25 years.”

Leasing versus buying a solar system outright

“We guide homeowners with what we’ve seen is the question that is most likely to help them decide what route to take: How much is your tax liability?” says Julio Daniel Hernandez, a representative of renewable energy company EnLight.Energy.

If your tax liability is big enough right now to able to take full advantage of the Federal and possible state tax incentives, he says, then you should take advantage of the available loans and tax credits. If you don’t have the tax liability, then a PPA/Lease makes more sense. You’ll get access to all of the energy your solar system can provide at a cheaper rate than your utility company (usually around 20% savings) and will not ever have to pay a dime out of pocket.

As far as break-even calculations cost go, Hernandez’s estimate is much more liberal than Hancock’s.

“Break-even with a PPA/lease is zero because you don’t pay anything; you just start saving right away similar to a third party electric company in a deregulated market,” he says. “If you buy a system, depending on the incentives available to you, break-even point should be around eight years or less.”

How incentives and pricing have evolved

As an early adopter of solar power a decade ago, you would have made out like a bandit with incentives, but that’s not the case now that so many people are switching over to the energy solution. But as with all technology, the longer it’s been around, the cheaper it becomes on the front end.

“Unfortunately, there are fewer incentives available now than there were 10 years ago due to the increased popularity of solar power,” explains Hancock. “However, the good news is that the price of solar panels has dropped by more than 60 percent over the past 10 years. So, while fewer federal and state solar incentives are up for grabs, solar power is still more affordable than ever for consumers.”

Is it a good investment?

In most states, solar power is a solid investment that will result in a significant return over the next 20 to 30 years.

“For example, an individual in California who purchases a solar system outright can probably expect to see a return between $30,000 and $40,000 over the next 25 years, while an individual in Washington could expect a return of about $10,000 for the same scenario,” Hancock says.

Although the dollar-for-dollar return isn’t as high for the Washingtonian as it is for the Californian, both individuals are still saving money with solar power.

Says Hernandez, “Your home value is estimated to go up $15,000-plus by upgrading to solar energy. Some of this depends on the size of the system, but studies are showing that the bulk of the increase comes from simply putting panels on and then there’s only a slight additional shift upward based on how big the system is.”